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The theoretical basis of continuum percolation has changed greatly since its beginning as little more than an
analogy with lattice systems. Nevertheless, there is yet no comprehensive theory of this field. A basis for such
a theory is provided here with the introduction of the Potts fluid, a system of interactings-state spins which are
free to move in the continuum. In thes→1 limit, the Potts magnetization, susceptibility, and correlation
functions are directly related to the percolation probability, the mean cluster size, and the pair connectedness,
respectively. Through the Hamiltonian formulation of the Potts fluid, standard methods of statistical mechanics
can therefore be used in the continuum percolation problem.@S1063-651X~96!13311-0#

PACS number~s!: 64.60.Ak

I. INTRODUCTION

The theoretical basis of continuum percolation@1#
changed drastically during the 1970s. In their seminal 1970
paper, Scher and Zallen@2# considered continuum percola-
tion as an extension of lattice models. Noting that the critical
volumefc is approximately universal, i.e., essentially inde-
pendent of the lattice structure, they suggested that it might
be carried over into continuum systems.

Such a view of the continuum as the representation of
what is lattice-independent sits well with the ideas of the
renormalization group where the continuum often represents
merely a scale at which the underlying lattice blurs and van-
ishes. Yet continuum percolation turned out to be much
richer than suggested by this conception. In extensive simu-
lations of continuum systems, Pike and Seager@3# found that
while the critical volume concept works fairly well for
spherical objects, it fails completely when the system con-
tains elongated bodies. This and similar works@4# prompted
Balberget al. @5# to suggest that rather than the critical vol-
ume, the proper universal quantity might be a criticalex-
cludedvolume. This concept, however, cannot be reduced to
some underlying lattice structure. Instead, it requires consid-
ering the continuum as fundamental rather than a large scale
approximation.

Fruitful as the excluded volume concept was, it neverthe-
less had clear limitations, since the critical excluded volume
is not in fact a truly universal quantity. The shape of objects
in the system clearly influenced the critical point — i.e., the
critical densityrc at which an infinite cluster first appears —
in a complicated way.

In 1977, Haan and Zwanzig@6# managed to push to its
limits the analogy between continuum and lattice percola-
tion. Relying heavily on graph theory, they managed to ex-
pand the mean cluster sizeS in powers of the density. From
this, they obtained values for the critical density which were
in good quantitative agreement with the results of simula-
tions. However, this line of developments was reaching its
limits as it became clear that continuum percolation could be
a complex interplay involving not only the shape of objects
— which determined the binding criterion —- but also pos-
sible interactions between these objects@7#. This element

was beyond accommodation into the analogy with lattice
models.

The breakthrough which gave continuum percolation an
independent theoretical basis came in two papers by
Coniglio et al. @8#. Building on previous work by Hill@9#,
these researchers showed that the mean cluster size could be
related to a pair-connectedness function which had an expan-
sion in powers of the density. This expansion included natu-
rally the interactions. Originally, Coniglioet al. developed
this expansion in the context of physical clustering in a gas,
but it was soon extended by analogy to other systems
@10,11#. Although the results were mainly qualitative at first,
some recent calculations have obtained quantitatively good
agreement with simulations@12#.

In spite of these successes, the theoretical basis of con-
tinuum percolation is still incomplete. The theory of
Coniglio et al. suffers from two essential problems. The first
is formal. The fundamental quantity in this theory is the pair-
connectedness function, yet the only mathematical definition
of it is in terms of a power expansion. This is an unsatisfac-
tory situation. Some nonperturbative scheme must underly
such a result, but it is absent from the work of Coniglioet al.
Another unsatisfactory aspect is that the extension of this
work to various percolation systems has to be done by anal-
ogy and reasonable assumption. While this is not a serious
problem, one would like to see a more formal basis for such
uses. The second main problem is that the theory of Coniglio
et al. does not say anything about the order parameter, the
percolation probability. This problem is related to the first
because perturbative expansions are limited to the region of
densities below the critical point, while the order parameter
is nontrivial only at densities above this point. Furthermore,
the percolation probability is not obtainable from the pair
connectedness, and therefore requires a different approach.

Such limitations also prevent one from approaching some
fundamental questions. First among these, probably, is re-
lated to the continuum percolation universality class. Com-
puter simulations suggest that continuum percolation belongs
to the universality class of lattice percolation. One would
like to understand this from the theoretical point of view, as
well as to assess whether this is true for all possible interac-
tions and binding criteria. Computer simulations are inad-
equate to address this problem, since they are greatly com-
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plicated by the presence of interactions. Furthermore,
obtaining critical exponents from a simulation is a notori-
ously delicate procedure, and one cannot claim yet that the
universality class of continuum percolation is known with
certainty.

The present series of papers is meant to be the basis for a
more comprehensive theory of continuum percolation, which
is based on an extension of the classic mapping between the
Potts model and lattice percolation which was invented by
Kasteleyn and Fortuin@13#. The present extension includes
an off-lattice version of the Potts model which I have called
the Potts fluid. Thes-state Potts fluid is introduced in Sec. II.
I show then that, as in the lattice case, all statistical averages
in the percolation model may be expressed as averages in the
Potts fluid. In Sec. III, this mapping is applied to the Potts
magnetization and susceptibility. The limits→1 of these
quantities yields the percolation probabilityP(r) and the
mean cluster sizeS, respectively. Section IV is concerned
with the Potts correlation functions. The pair connectedness
is shown to be directly related to the Potts pair-correlation
function. Section V sums up the results.

II. GENERAL FORMALISM

By ‘‘continuum percolation’’ I always mean a system of
particles interacting through a pair potentialv(rW i ,rW j ) and
obeying classical statistical mechanics. In addition to their
interaction, the particles possess another property, the ‘‘con-
nectivity,’’ determined by a probability functionp(rW i ,rW j )
which is the probability that two particles located atrW i and
rW j are bound, or connected, to each other. Acluster is a
group of such connected particles. Let us also define
q(rW i ,rW j )512p(rW i ,rW j ) as the complementary function.

Note that we do not assume any ‘‘locking’’ mechanism:
bound particles do not remain glued together thereafter. In-
deed, the system does not evolve with time at all. The point
of view adopted here is that of equilibrium statistical me-
chanics, where all properties are derived from an ensemble
of ‘‘snapshot’’ configurations. As a result, the properties of
connectivity and interaction are arranged hierarchically. The
interaction alone determines the configuration of the par-
ticles, which in turn helps determine the connectivity, but the
connectivity does not in its turn influence the configuration.

Often, as in systems of permeable objects@3#, p(rW i ,rW j )
takes only two values, 0 or 1, but no such restrictions are
assumed here. Thus the connectivity state need not be
uniquely determined by the geometrical configuration of the
particles. Only its probability distribution is fully determined
through the functionp(rW i ,rW j ).

The formalism presented here is an extension of the
Kasteleyn-Fortuin mapping between lattice percolation and
the Potts model@13#. For the continuum case I will define an
extension of the Potts model, hereafter called thePotts fluid.

The s-state Potts fluid is a system ofN ‘‘spins’’ $l i% i51
N

each havings possible states, and obeying classical statistical
mechanics. Each spin has a positionrW i in the continuum and
the spins interact with each other through a spin-dependent
pair potentialV(rW i ,l i ;rW j ,l j ), such that

V~rW i ,l i ;rW j ,l j ![V~ i , j !5HU~rW i ,rW j ! if l i5l j

W~rW i ,rW j ! if l iÞl j ,
~2.1!

whereU andW are arbitrary functions.
The spins may also couple to an external fieldh(rW) which

tends to align them in some given state. If we arbitrarily
denote this state as 1, then the interaction Hamiltonian is

H int52(
i51

N

c~l i !h~rW i ! ~2.2!

where

c~l!5H s21 if l51

21 if lÞ1.
~2.3!

For conciseness, two spins in the same state will be said to
beparallel to each other~though the state need not actually
correspond to any spatial directions!. Two spins in different
states will be called nonparallel.

As in all classical systems@14#, the dependence on the
momenta can be factored out so that all statistical averages
depend on the configuration integral

Z5
1

N! ($lm%
E drW1•••drWNexpF2b(

i. j
V~ i , j !

1b(
i51

N

h~ i !c~l i !,G ~2.4!

where the sum($lm% is over all spin configurations, and

b51/kT is the inverse temperature as usual.
Now, any continuum percolation model defined by

v( i , j ) andp( i , j ) can be mapped onto an appropriate Potts
fluid model with a pair-spin interaction defined by

U~ i , j !5v~ i , j !,

exp@2bW~ i , j !#5q~ i , j !exp@2bv~ i , j !#. ~2.5!

This mapping relates statistical averages of the Potts fluid to
statistical averages of the percolation model. The most fun-
damental relation is obtained for the Potts fluid configuration
integral Eq.~2.4!. However, because the following derivation
can be a little confusing, let us anticipate the final result. The
formal mapping Eq.~2.5! induces a geometrical mapping
between spin configurations and connectivity states. To ev-
ery particle in the percolation system we assign a spin in
such a way that if two objects belong to the same cluster in
the percolation model, they are assigned the same spin~i.e,
their spins are parallel! in the corresponding Potts fluid spin
configuration. However, the actual value of this common
spin is selected at random. Therefore the mapping from the
percolation model to the Potts fluid is one to many. Any
connectivity state corresponds to several spin configurations,
which differ from one another by the actual value of the spin
assigned in common to all the particles in a given cluster.
Because of the one to many character of this mapping, the
status of two parallel spins differs radically from the status of
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two nonparallel spins. If two spins are nonparallel, theymust
belong to different clusters in the percolation picture. How-
ever, if two spins are parallel,no conclusionmay be drawn
as to their connectivity state. They might be parallel because
they belong to the same cluster. But they might also belong
to different clusters and have been assigned the same spin by
chance. Since the common spin of every particle in a cluster
is assigned randomly, it is quite probable that two unrelated
clusters end up with the same spin. This difference makes
‘‘disconnectedness’’ a more basic property than connected-
ness, in the sense that given a spin configuration, one can
never deduce with certainty that two particles belong to the
same cluster in the corresponding percolation model. How-
ever, one may be able to deduce that two particlesdo not
belong to the same cluster.

Let us now see how this geometrical mapping arises natu-
rally out of the formal mapping Eq.~2.5!. For simplicity, let
us assume temporarily that the external field vanishes, i.e.,
h(rW)50. Introduce the notation

Z5
1

N! E drW1•••drWNQ~rW1 , . . . ,rWN!,

Q~rW1 , . . . ,rWN!5 (
$lm%

expF2b(
i. j

V~rW i ,rW j !G . ~2.6!

In the expression forQ(1, . . . ,N), let us separate all pos-
sible configurationslm into those wherel15l2 , and the
rest

Q5e2bU~1,2! (
H lm
l15l2J

expF2b (
~ i , j !2~1,2!

V~ i , j !G
1e2bW~1,2! (

H lm
l1Þl2J

expF2b (
~ i , j !2~1,2!

V~ i , j !G ,
~2.7!

where ( ( i , j )2(1,2) means a summation over all pairs (i , j )
except the pair (1,2). In the second term on the left-hand side
of Eq. ~2.7!, we can now rewrite

(
H lm
l1Þl2J

expF2b (
~ i , j !2~1,2!

V~ i , j !G
5 (

$lm%
expF2b (

~ i , j !2~1,2!
V~ i , j !G

2 (
H lm
l15l2J

expF2b (
~ i , j !2~1,2!

V~ i , j !G , ~2.8!

where the sum($lm% is now performed over all spin configu-
rations without constraints. Equation~2.7! now becomes

Q5@e2bU~1,2!2ebW~1,2!# (
H lm
l15l2J

expF2b (
~ i , j !2~1,2!

V~ i , j !G
1e2bW~1,2! (

$lm%
expF2b (

~ i , j !2~1,2!
V~ i , j !G . ~2.9!

The mapping Eq.~2.5! then implies that

Q5p~1,2!e2bv~1,2! (
H lm
l15l2J

expF2b (
~ i , j !2~1,2!

V~ i , j !G
1q~1,2!e2bv~1,2! (

$lm%
expF2b (

~ i , j !2~1,2!
V~ i , j !G ,

~2.10!

where we used the fact thatp(1,2)512q(1,2). Repeating
this procedure for the pair (1,3), we obtain

Q5p~1,2!p~1,3!e2b[v~1,2!1v~1,3!] (
H lm
l15l25l3J

expF2b (
~ i , j !2~1,2!2~1,3!

V~ i , j !G1p~1,2!q~1,3!e2b[v~1,2!1v~1,3!]

3 (
H lm
l15l2J

expF2b (
~ i , j !2~1,2!2~1,3!

V~ i , j !G1q~1,2!p~1,3!e2b[v~1,2!1v~1,3!] (
H lm
l15l3J

expF2b (
~ i , j !2~1,2!2~1,3!

V~ i , j !G
1q~1,2!q~1,3!e2b[v~1,2!1v~1,3!] (

$lm%
expF2b (

~ i , j !2~1,2!
V~ i , j !G . ~2.11!

One sees therefore how the geometric mapping comes about. Every sum is performed over a subset of spin configurations
determined by a set ofconstraintsof the forml15l2 , . . . . All constraints are equalities between spin pairs. There are no
constraints forcing two spins to be nonparallel. Every constraintl i5l j also brings forth a factorp( i , j ), the probability for the
pair to be bound. Since a bound pair belongs by definition to the same cluster, we see the beginning of the geometrical
mapping in which spins in a single cluster have parallel spins. To see the full mapping, we need to repeat the procedure
outlined in Eqs.~2.7!–~2.11! for all pairs of spins. Let us consider one of the sums into which the functionQ has been
decomposed a step before, and consider a pair (m,n). Two possibilities arise.

~1! Previous constraints already determine thatlm5ln ~for example, there could be somek for which lm5lk and
ln5lk). Then, necessarily,V(m,n)5U(m,n)5v(m,n). Hence
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(
H lm

previous
constraints

J
expF2b (

~ i , j !2•••

V~ i , j !G5e2bv~m,n! (
H lm

previous
constraints

J
expF2b (

~ i , j !2•••2~m,n!
V~ i , j !G

5p~m,n!e2bv~m,n! (
H lm

prev.
constr.

J
expF2b (

~ i , j !2•••2~m,n!
V~ i , j !G

1q~m,n!e2bv~m,n! (
H lm

prev.
constr.

J
expF2b (

~ i , j !2•••2~m,n!
V~ i , j !G ,

~2.12!

where we usedp(m,n)1q(m,n)51.
~2! Previous constraints do not determine thatlm5ln .

Then the situation is as it was for the pair (1,2), and the sum
will split in the following way:

(
H lm
constr.J

expF2b (
~ i , j !2•••

V~ i , j !G
5p~m,n!e2bv~m,n!

3 (
Hlm : . . .

lm5ln J
expF2b (

~ i , j !2•••2~m,n!
V~ i , j !G

1q~m,n!e2bv~m,n!

3 (
$lm : . . . %

expF2b (
~ i , j !2•••2~m,n!

V~ i , j !G . ~2.13!

From the point of view of the geometrical mapping, case~1!
means thatm and n already belong to the same cluster by
virtue of some other particles which link them~perhaps in-
directly!. Hence it does not matter whether they are also
directly bound to each other@a case which contributes the
factor p(m,n)# or not @a case which contributes the factor
q(m,n)#. As a result, both contributions appear without the
addition of any constraint. In case~2!, on the other hand, the
appearance of the factorp(m,n) also requires a constraint
which now implies thatm and n are bound and therefore
belong to the same cluster. The factorq(m,n) requires no
such constraint, since, if the particles belong to different
clusters, their spin attribution is random.

When all pairs have been covered, the set of constraints of
a particular sum specifies exactly which particles belong to
which clusters in the original percolation model configura-
tion. Since the expression forQ contains sums over all pos-
sible constraints, it can be rewritten as a sum over all pos-
sible clusterings of the original percolation configuration.
Thus let us define

P~conn.![ )
H all
bound
pairs
~ i , j !

J
p~ i , j ! )

H all
unbound
pairs

~m,n!
J
q~m,n!

3expF2b(
i. j

v~ i , j !G . ~2.14!

Then we can writeQ as

Q5 (
H all possible
connectivity

states
J

(
H lm consistent

with the
connectivity

state
J
P~conn.!, ~2.15!

where the sum over all spins is consistent with the connec-
tivity state in the sense of the geometrical mapping, i.e., that
all particles within a single cluster must be assigned the same
spin ~note, however, that not all particles in a cluster need be
directly bound to each other!.

From the probabilistic interpretation of the functions
p( i , j ), q( i , j ) and of the usual canonical Gibbs distribution,
we now see that up to a normalization, Eq.~2.14! means that

P~conn.!}

@probability density of finding a configuration~rW1 , . . . ,rWN!

such that all pairs~ i , j ! are bound and all pairs~m,n!

are unbound#.

~2.16!
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Returning now to Eq.~2.4!, and restoring the external field
h(rW), we finally find

Z5
1

N! E d1•••dN (
H conn.statesJ

P~conn.!

3 (
$lm :cl%

expFb(
i51

N

h~rW i !c~l i !G . ~2.17!

Here the symbol($l : cl% means a sum over all spin configu-
rations consistent with the clustering, i.e., with the connec-
tivity state in the sense of the geometrical mapping.

This expression has the form of an average over all per-
colation configuration~up to nonimportant normalization
factors!. It is the fundamental relation between statistical av-
erages calculated in the percolation model and quantities cal-
culated in the corresponding Potts fluid. As we shall below,
this allows us to obtain percolation-related quantities by cal-
culating properties of the Potts fluid defined in Eq.~2.5!.
However, since there is no equivalent in the percolation
model to the fieldh, we need to set this field to zero. In this
case, Eq.~2.17! becomes

Z5
1

N! E d1• • • dN (
H conn.statesJ

P~conn.!sNc, ~2.18!

whereNc is the total number of clusters in the relevant con-
nectivity state. The termsNc is then the number of possible
assignments of spins to theseNc clusters in accordance with
the geometrical mapping.

Finally we shall have to get rid of the free parameters. As
in the usual Kasteleyn-Fortuin mapping@13#, the interesting
case is the limits→1. The resulting expression

Zp[
1

N! E d1• • •dN (
H conn.statesJ

P~ conn.! ~2.19!

is just the normalization factor required for averages per-
formed within the percolation model. Hence

Z5ZpK (
$lm : cl%

expFb(
i51

N

h~rW i !c~l i !G L
p

, ~2.20!

where the symbol̂&p means a canonical average performed
in the percolation model, i.e.,

^F~1, . . . ,N!&p5
1

N!Zp
E d1• • •dN

3 (
H conn.statesJ

P~conn.!F~1, . . . ,N!, ~2.21!

whereF is some quantity defined in the percolation model.
Similarly, we need averages performed in the Potts fluid,

which will be denoted bŷ&s . Given a quantityG defined in
the Potts fluid, we have

^G~1,l1 ; . . . ;N,lN!&s5
1

N!ZE d1• • •dN

3 (
$lm%

G~1,l1 ; . . .;N,lN!

3expF2b(
i. j

V~ i , j !

1b(
i51

N

h~ i !c~l i !G . ~2.22!

Equation~2.15! now implies that, in general, for any quantity
G(1,l1 ; . . . ;N,lN) defined in the Potts fluid system, we
have

^G~1,l1 ; . . . ;N,lN!&s

5K (
$lm : cl%

G~1,l1 ; . . . ;N,lN!e[b(h~ i !c~l i !] L
p

. ~2.23!

This fundamental relation allows us to translate every quan-
tity in the Potts fluid into some quantity defined in the con-
tinuum percolation model.

We now turn to using Eq.~2.20! to show that the average
magnetization in the Potts fluid is directly related to the order
parameter of the percolation model, the percolation probabil-
ity.

III. POTTS MAGNETIZATION AND PERCOLATION
PROBABILITY

The magnetization of the Potts fluid is defined as in the
usual Potts model by

M5
1

bN~s21!

] lnZ

]h
~3.1!

whereh is the now constant external field. From Eqs.~2.20!
and ~2.23!, we have

M5K 1

N~s21!(i51

N

c~l i !L
s

5K 1

N~s21! (
$lm : cl%

H (
i51

N

c~l i !

3expFb(
i51

N

h~rW i !c~l i !G J L
p

. ~3.2!

In order to calculate this expression, we need to charac-
terize more formally the sum over all spin states. In a given
connectivity state, let us denote byNr(1<r<N) the number
of clusters containing exactlyr particles~possiblyNr50).
Also, because of their particular role, let us denote separately
the number of spanning clusters byNs ~as we takeN→`,
Ns is either 0 or 1!. Any connectivity state thus corresponds
to a set of numbers (N1 ,N2 , . . . ,NN ,Ns) ~other connectivity
states may also correspond to the same set!. For a given spin
configuration consistent with this clustering, let us denote by
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kr the number ofr clusters which have been assigned the
spin 1 (ks will represent the spanning clusters assigned the
spin 1!. Every spin configuration generates therefore a set
(k1 ,k2 , . . . ,kN ,ks). Then the total number of spin configu-
rations consistent with the given clustering is

(
k150

N1

(
k250

N2

• • • (
kN50

NN

(
ks50

Ns S k1N1
D • • •S kNNN

D S ksNs
D

3~s21!N12k1
• • •~s21!Ns2ks. ~3.3!

The factor (s21)Nr2kr is the number of possible spin assign-
ments to the (Nr2kr) r clusters which have a spin different
from 1.

Consider now the expression( i51
N c(l i). From the defi-

nition of c(l), Eq. ~2.3!, every j cluster with a spin 1 con-
tributes a termj (s21) to this expression. Everyj cluster
with a spin different from 1 contributesj (21) to it. There-
fore, for a given spin configuration,

(
i51

N

c~l i !5~s21!F (
j51

N

jk j1nsksG
2F (

j51

N

j ~Nj2kj !1ns~Ns2ks!G
5sF (

j51

Ns

jk j G2N, ~3.4!

wherens is the number of spins in the spanning cluster~we
anticipate the thermodynamic limit and assume that the span-
ning cluster, if it exists, is unique!, and where we have used
the identity( j51

Ns jk j5N. The notation( j51
Ns jk j is shorthand

for nsks1( j51
N jk j .

We now have that

1

N~s21! (
$lm : cl%

H expFbh(
i51

N

c~l i !G(
i51

N

c~l i !J
5e2bhN)

l51

Ns H (
kl50

Nl S klNl
D ~s21!Nl2kl~elbhs!kl

3F 1

N~s21!(j51

Ns

~s jkj !2NG J , ~3.5!

where) l51
Ns [) l51

NN
•••3( case l5Ns).

It is easy to prove~e.g., by induction! the two identities

(
kl50

Nl S klNl
D ~s21!Nl2kl~elbhs!kl5@elbhs1~s21!#Nl,

~3.6!

(
kl50

Nl

kl S klNl
D ~s21!Nl2kl~elbhs!kl

5
@elbhs1~s21!#Nl

elbhs1~s21!
Nle

lbhs. ~3.7!

Therefore,

)
l51

Ns F (
kl50

Nl S klNl
D ~s21!Nl2kl~elbhs!klG ~2N!

52N)
l51

N2s

@elbhs1~s21!#Nl ~3.8!

and

)
l51

Ns H (
kl50

Nl

klS klNl
D ~s21!Nl2kl~elbhs!kl(

j51

Ns

jsJ
5F)l51

lÞ j

Ns

(
kl50

Nl S klNl D ~s21!Nl2kl~elbhs!klG
3 (

kj50

Nj

kjS kjNj D ~s21!Nj2kj~ejbhs!kj

5(
j51

Ns

s jNj

ejbhs

ejbhs1~s21!)l51

Ns

3@elbhs1~s21!#Nl. ~3.9!

Combining these two equations, we finally obtain

(
$lm : cl%

H expFbh(
i51

N

c~l i !G(
i51

N

c~l i !J 5e2bhN)
l51

Ns

@elbhs

1~s21!#NlH 2N1(
j51

Ns

s jNj

ejbhs

ejbhs1~s21! J . ~3.10!

Recalling thatN5( j51
Ns jN j and rearranging terms, we have

that

1

N~s21! (
$lm : cl%

H expFbh(
i51

N

c~l i !G(
i51

N

c~l i !J
5
1

N
e2bhN)

l51

Ns

@elbhs1~s21!#Nl

3H (
j51

Ns

jN j

ejbhs21

ejbhs1~s21! J
5)

l51

Ns

@11~s21!e2sb lh#Nl

3(
j51

Ns jN j

N F 12e2 jbhs

11~s21!e2 jbhsG . ~3.11!

Hence

M5K )
l51

Ns

@11~s21!e2sb lh#Nl

3(
j51

Ns jN j

N F 12e2 jbhs

11~s21!e2 jbhsG L
p

. ~3.12!
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To obtain a quantity directly related to the percolation
model, we need to take the limits→1, which yields

M ~s→1!5K 1N(
j51

Ns

jN j2
1

N(
j51

Ns

e2 jbhL
p

512K 1N(
j51

Ns

jN je
2 jbhL

p

. ~3.13!

Finally, we need to take the thermodynamic limit and set the
external field to 0. As always, we must be careful in the order
of these limits@15#. A broken symmetry state will only be
obtained if the field remains finite whileN→`. In the limit
N→`, the spanning cluster behaves differently from the fi-
nite clusters. Equation~3.13! can be rewritten as

M512
1

N K (
j51

N

jN je
2 jbh1

nsNs

N
e2bhnsL

p

. ~3.14!

In the limit N→`, the factors exp(2jbh) remain finite, but
exp(2bhns)→0 because the spanning cluster then becomes
infinite. It is this property which distinguishes it from all
finite clusters. Hence

M512 lim
N→`

K 1N(
j51

N

jN je
2 jbhL

p

. ~3.15!

Finally, we can seth50. At this stage, the limits commute
and we obtain

M512 lim
N→`

K 1N(
j51

N

jN j L
p

512 lim
N→`

KN2ns
N L

p

5 lim
N→`

K nsN L
p

. ~3.16!

This is exactly the probability that a particle picked at ran-
dom belongs to the infinite cluster, which is by definition the
percolation probabilityP(r). Therefore,

lim
h→0

lim
N→`

lim
s→1

M5P~r!, ~3.17!

and the percolation order parameter is directly calculable
from the Potts magnetization.

We can calculate the Potts susceptibility most easily from
Eq. ~3.15!, before we set the field to 0~it is easy to see that
the derivative]/]h commutes with all the operations per-
formed up to that point!. Thus

x5
]M

]h
5b lim

N→`
K 1N(

j51

N

j 2Nje
2 jbhL

p

. ~3.18!

Taking now the limit h→0, and using again that
N5( j51

Ns jN j , gives

x5
]M

]h
5b lim

N→`
K ( j51

N j 2Nj

( j51
Ns jN j

L
p

. ~3.19!

For densitieslower than the critical density, there is no span-
ning cluster~in the thermodynamic limit!, so that

x5b lim
N→`

K ( j51
N j 2Nj

( j51
N jN j

L
p

5bS ~r,rc!, ~3.20!

whereS is the average mean cluster size, by definition@16#.
Therefore, we can calculate the percolation probability by

calculating instead the magnetization of a corresponding
Potts fluid, and the average mean cluster size by calculating
the Potts susceptibility.

IV. CORRELATION FUNCTIONS

The Potts magnetization and susceptibility are directly re-
lated to then-density functions of the Potts fluid, which are
defined in analogy to then-density functions of a classical
liquid @14# as

r~n!~rW1 ,l1 ;rW2 ,l2 ; . . . ,rWn ,ln!

5
1

Z~N2n!! E drWn11• • •drWN

3expF2b(
i. j

V~ i , j !2b(
i51

N

h~ i !c~l i !G . ~4.1!

The normalization is chosen so that

(
$l1 , . . . ,ln%

E d1•••dnr~n!5sN
N!

~N2n!!
. ~4.2!

The n-density functions can also be expressed as canonical
averages,

r~1!~xW ,s!5K (
i51

N

d~rW i2xW !dl i ,sL
s

, ~4.3!

r~2!~xW ,s;yW ,h!5K (
i51

N

(
j51
jÞ i

N

d~rW i2xW !d~rW j2yW !dl i ,s
dl j ,hL

s

,

~4.4!
and so on. Now, we can rewrite

c~l i !5~s21!dl i ,1
2 (

lÞ1
dl i ,l

. ~4.5!

Using the identity*dxWd(rW i2xW )51, we now have
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K (
i51

N

c~l i !L
s

5K ~s21!(
i51

N E dxWd~rW i2xW !dl i ,1L
s

2K (
i51

N E dxWd~rW i2xW ! (
lÞ1

dl i ,lL
s

5E dxWF ~s21!r~1!~xW ,s51!

2 (
sÞ1

r~1!~xW ,s!G . ~4.6!

Since the fieldh preserves the symmetry between all the
spinslÞ1, r (1)(xW ,s) must be the same for allsÞ1. Hence

M5K 1

N~s21!(i51

N

c~l i !L
s

5
1

NE dxW @r~1!~xW ,1!2r~1!~xW ,a!#

~4.7!

wherea denotes some~arbitrary! spin value other than 1.
From the normalization, Eq.~4.2!, it is now obvious that

E dxWr~1!~xW ,1!5n1 ,

wheren1 is the number of spins in state 1, and

E dxWr~1!~xW ,a!5n,

wheren is the number of spins in any stateaÞ1.
~4.8!

Hence

M5
1

N
~n12n! ~4.9!

is just the excess density of spins in the state 1 over the
density of spins in any other state.

From Eq.~3.2!, and the definitionx5]M /]h, the suscep-
tibility is

x5K b

N~s21!(iÞ j
c~l i !c~l j !L

s

1K b

N~s21!(i51

N

c2~l i !L
s

.

~4.10!

Repeating the steps leading to Eq.~4.6!, we have

K b

N~s21!(i51

N

c2~l i !L
s

5
b

N~s21!
E dxW(

s
c2~s!

3r~1!~xW ,s!, ~4.11!

where the sum overs runs over all thes possible spin states.
On the other hand,

(
iÞ j

c~l i !c~l j !5(
a

(
g

c~a!c~g!(
iÞ j

dl i ,a
dl j ,g

,

~4.12!

where, again, the sum overa and g runs over thes spin
states. Hence, by a derivation similar to the one used for Eq.
~4.6!, we have

K (
iÞ j

c~l i !c~l j !L
s

5K (
a

(
g

c~a!c~g!(
iÞ j

3E dxWdyWd~rW i2xW !d~rW j2yW !dl i ,a
dl j ,gL

s

5E dxWdyW F(
a

(
g

c~a!c~g!r~2!~xW ,a;yW ,g!G . ~4.13!

Therefore

x5
b

N~s21!
E dxWdyW F(

a
(
g

c~a!c~g!r~2!~xW ,a;yW ,g!G
1

b

N~s21!
E dxW(

a
c2~a!r~1!~xW ,a!. ~4.14!

Let us now relate this expression to the percolation pic-
ture, i.e., to the limits→1, when x→bS for densities
r,rc . For this range of densities, the symmetry of the sys-
tem is completely unbroken andr (1)(xW ,a) is independent of
a. From the normalization Eq.~4.2!, it follows that

E dxWr~1!~xW ,a!5
1

sE dxW(
a

r~1!~xW ,a!5N. ~4.15!

Now (ac2(a)5(s21)21(s21)(21)2, so that

lim
s→1

1

s21(a c2~a!51, ~4.16!

and, therefore,

b

N~s21!
E dxW(

a
c2~a!r~1!~xW ,a!5b. ~4.17!

Hence, whens→1,

x

b
→S511 lim

s→1

1

N~s21!
E dxWdyW F(

a
(
g

c~a!c~g!

3r~2!~xW ,a;yW ,g!]. ~4.18!

Let us now recalculate this quantity by using the general
connection between averages in the Potts fluid and in the
percolation model, Eq.~2.23!. In particular,we have

K b

N~s21!(iÞ j
c~l i !c~l j !L

s

5
b

N~s21!(iÞ j
K (

$lm :cl.%
c~l i !c~l j !L

p

, ~4.19!
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where we have already seth50, which is allowed, since, in
the ranger,rc , the symmetry is unbroken anyway. Let us
now calculate the average on the right-hand side separately
whenl i andl j belong to the same cluster and when they do
not. To this end, define a functionV( i , j ) as

V~ i , j !5H 1 if i , j belong to the same cluster

0 otherwise.
~4.20!

Then, from Eq.~2.21!,

K (
$lm :cl.%

c~l i !c~l j !L
p

5
1

N!Zp
E d1•••dN (

H conn.statesJ
P~conn.!

3 (
$lm :cl%

c~l i !c~l j !V~ i , j !1
1

N!Zp
E d1•••dN

3 (
H conn.statesJ

P~conn.! (
$lm :cl%

c~l i !c~l j !@12V~ i , j !#.

~4.21!

The first sum contributes only ifl i and l j belong to the
same cluster, while the second contributes only if they be-
long to separate clusters. Because of the geometrical map-
ping, c(l i)5c(l j ) in the first sum. Also, in the sum over
$lm :cl%, every cluster other than the one containingl i and
l j contributes a factors, the number of possible spin assign-
ments. The cluster containingl i andl j , on the other hand,
contributes a factor (s21)2 if l i5l j51 and (21)2 for the
(s21) other possible choices forl i5l j . Therefore,

(
$lm :cl%

c~l i !c~l j !V~ i , j !5sNc21@~s21!21~s21!

3~21!2#V~ i , j !, ~4.22!

whereNc is the total number of cluster in the configuration.
Hence

b

ZpN~s21!N! E d1• • •dN (
H conn.statesJ

P~conn.!

3 (
$lm :cl%

c~l i !c~l j !V~ i , j !

5
b

N!ZpN
E d1•••dN (

H conn.statesJ
P~conn.!sNc21

3~s2111!V~ i , j !

5
b

N
^sNcV~l i ,l j !&p . ~4.23!

The second sum on the right-hand side of Eq.~4.21! contrib-
utes only ifl i andl j belong to different clusters. The cluster
containingl i contributes a factor (s21) if l i51, and a
factor (21) in all the other (s21) cases. The same holds for
the cluster containingl j . TheNc22 remaining clusters con-
tribute each a factors. Hence

(
$lm :cl%

c~l i !c~l j !@12V~ i , j !#

5sNc22@~s21!1~s21!~21!#2@12V~ i , j !#

50. ~4.24!

We can now substitute Eqs.~4.23! and~4.24! into Eq.~4.10!,
then again take the limits→1. Repeating the steps leading to
Eq. ~4.18!, we end up this time with

x

b
→S511

1

NE dxWdyW K (
iÞ j

V~ i , j !d~rW i2xW !d~rW j2yW !L
p

.

~4.25!

We define now the function

g†~xW ,yW ![
1

r~xW !r~yW !
K (
iÞ j

V~ i , j !d~rW i2xW !d~rW j2yW !L
p

~4.26!

to be thepair-connectednessfunction @r(xW ) is the density at
position xW #. From the definition ofV( i , j ), the meaning of
g† is

r~xW !r~yW !g†~xW ,yW !dxWdyW5

~probability of finding two particles in regionsdxW and

dyW around the positionsxW andyW , such

that they both belong to the same cluster)

~4.27!
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which shows the pair-connectedness to be a generalization of
the corresponding function in lattice percolation@16#. Hence

S511
1

NE dxWdyWr~xW !r~yW !g†~xW ,yW !. ~4.28!

Usually, the system is translationally invariant, so that
g†(xW ,yW )5g†(xW2yW ) andr(xW )5r(yW )5r. Then

S511
V

N
r2E drWg†~rW !511rE drWg†~rW !. ~4.29!

Comparing Eq.~4.28! with Eq. ~4.18!, we finally obtain the
important relationship

g†~xW ,yW !5 lim
s→1

1

~s21!r~1!~xW !r~1!~yW !
(
a

(
g

c~a!c~g!

3r~2!~xW ,a;yW ,g!. ~4.30!

Let us now introduce the spin pair-correlation function, de-
fined as

gs
~2!~xW ,a;yW ,g![

1

r~1!~xW !r~1!~yW !
r~2!~xW ,a;yW ,g!,

~4.31!

which tends to 1 whenuxW2yW u→`. We can now rewrite Eq.
~4.30! as

g†~xW ,yW !5 lim
s→1

1

s21(a (
g

c~a!c~g!gs
~2!~xW ,a;yW ,g!

~4.32!

or

g†~xW ,yW !5 lim
s→1

1

s21(a c2~a!gs
~2!~xW ,a;yW ,a!

1 lim
s→1

1

s21(
aÞg

c~a!c~g!gs
~2!~xW ,a;yW ,g!.

~4.33!

We now have

(
a

c2~a!gs
~2!~xW ,a;yW ,a!5~s21!2gs

~2!~xW ,1;yW ,1!1~s21!

3~21!2gs
~2!~xW ,s;yW ,s!, ~4.34!

where s is any value of the spin different from 1. As a
result,

lim
s→1

1

s21(a c2~a!gs
~2!~xW ,a;yW ,a!5 lims→1gs

~2!~xW ,s;yW ,s!

~4.35!

wheresÞ1.
Similarly,

(
aÞg

c~a!c~g!gs
~2!~xW ,a;yW ,g!

5~s21! (
gÞ1

c~g!gs
~2!~xW ,1;yW ,g!1~s21!

3 (
aÞ1

c~a!gs
~2!~xW ,a;yW ,1!

2 (
aÞ1

(
gÞa
gÞ1

c~a!c~g!gs
~2!~xW ,a;yW ,g!

5~s21!2@gs
~2!~xW ,1;yW ,s!

1gs
~2!~xW ,s;yW ,1!#1~s21!~s22!gs

~2!~xW ,s;yW ,h!

~4.36!

wheresÞh are any values of the spin which are both dif-
ferent from 1. As a result,

lim
s→1

1

s21(
aÞg

c~a!c~g!gs
~2!~xW ,a;yW ,g!

52 lims→1gs
~2!~xW ,s;yW ,h! ~4.37!

Substituting Eqs.~4.35! and~4.37! into Eq. ~4.33!, we have,
finally, that

g†~xW ,yW !5 lim
s→1

@gs
~2!~xW ,s;yW ,s!2gs

~2!~xW ,s;yW ,h!#~r,rc!,

~4.38!

wheres,hÞ1 andsÞh.
This last equation is easily understood in terms of the

geometrical mapping. If two particlesxW andyW belong to the
same cluster, they must have the same spin, say a spins.
Henceg†(xW ,yW ) must be contained ings

(2)(xW ,s;yW ,s). How-

ever, gs
(2)(xW ,s;yW ,s) also includes the case where the two

particles have the same spin but belong to different clusters.
This happens if the two clusters have been assigned, by
chance, the same overall spin. However, since such a spin
assignment is random, the probability of the two particles
having the spinss ands ~identical! is exactly the same as
their having spinss andh, where nowsÞh ~note that such
an assignment automatically necessitates that the particles
belong to different clusters!. Hencegs

(2)(xW ,s;yW ,s) exceeds

g†(xW ,yW ) by preciselygs
(2)(xW ,s;yW ,h). This is the meaning of

Eq. ~4.38!. This allows us to calculate the pair connectedness
by working out the spin pair correlations and then taking the
limit s→1. This completes the relation between the percola-
tive quantities and those of the Potts fluid.

V. CONCLUSION

This paper focused on the formal basis of continuum per-
colation theory. It provided a nonperturbative definition of
the fundamental quantities of the theory as well as showing
formally how the binding criterionp(rW) and the interaction
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v(rW) enter them. We saw that the quantities of interest in
continuum percolation can be obtained from thes→1 limit
of the Potts fluid. Specifically, the magnetization and the
susceptibility become, in this limit, the percolation probabil-
ity and the mean cluster size, respectively, while the pair
connectedness is, in this limit, the difference between two
Potts pair-correlation functions.

The advantage of this mapping is that the Potts fluid has a
Hamiltonian formulation. This is the key to applying the
techniques of equilibrium statistical mechanics and phase
transitions to the problem of continuum percolation, a task
which will be undertaken in future papers in this series. The

line of attack is always to perform all calculations or theo-
retical derivations within the Potts fluid model, then to take
the limit s→1 and thus obtain the corresponding values or
expressions in the percolation system.

The first such technique that one would think to apply to
any problem of phase transition is the mean field theory. The
Hamiltonian formulation of the Potts fluid allows a mean
field approximation to be defined, while it would be far from
obvious how to do this directly for the continuum percolation
system. The mean field theory turns out to be nontrivial to
derive because of the continuum nature of the system and the
presence of interactions. It is the subject of the next paper.
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