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The theoretical basis of continuum percolation has changed greatly since its beginning as little more than an
analogy with lattice systems. Nevertheless, there is yet no comprehensive theory of this field. A basis for such
a theory is provided here with the introduction of the Potts fluid, a system of interaetitage spins which are
free to move in the continuum. In th&—1 limit, the Potts magnetization, susceptibility, and correlation
functions are directly related to the percolation probability, the mean cluster size, and the pair connectedness,
respectively. Through the Hamiltonian formulation of the Potts fluid, standard methods of statistical mechanics
can therefore be used in the continuum percolation prob&1063-651X96)13311-Q

PACS numbd(s): 64.60.Ak

I. INTRODUCTION was beyond accommodation into the analogy with lattice
models.
The theoretical basis of continuum percolatidi] The breakthrough which gave continuum percolation an

changed drastically during the 1970s. In their seminal 197ndependent theoretical basis came in two papers by
paper, Scher and Zallgf2] considered continuum percola- Coniglio et al. [8]. Building on previous work by Hill[9],
tion as an extension of lattice models. Noting that the criticathese researchers showed that the mean cluster size could be
volume ¢, is approximately universal, i.e., essentially inde- related to a pair-connectedness function which had an expan-
pendent of the lattice structure, they suggested that it migtion in powers of the density. This expansion included natu-
be carried over into continuum systems. rally the interactions. Originally, Conigliet al. developed
Such a view of the continuum as the representation ofiS expansion in the context of physical clustering in a gas,
what is lattice-independent sits well with the ideas of thePUt it was soon extended by analogy to other systems

renormalization group where the continuum often representst0,11. Although the results were mainly qualitative at first,

merely a scale at which the underlying lattice blurs and vanSCMe recent _Calc_ulatior)s have obtained quantitatively good
reement with simulatior4.2].

ishes. Yet continuum percolation turned out to be mucH9 _ . .
In spite of these successes, the theoretical basis of con-

richer than suggested by this cqnception. In extensive Simlﬁnuum percolation is still incomplete. The theory of
lations of continuum systems, Pike and Sed@gfound that Coniglio et al. suffers from two essential problems. The first

while _the cr_|t|ca| _volu_me concept works fairly well for is formal. The fundamental quantity in this theory is the pair-
sphencal objects, |t_fa|Is c_omplete_ly _vvhen the system CON%onnectedness function, yet the only mathematical definition
tains elongated bodies. This and similar wopk$prompted ¢ it is in terms of a power expansion. This is an unsatisfac-
Balberget al. [5] to suggest that rather than the critical vol- oy sjtyation. Some nonperturbative scheme must underly
ume, the proper universal quantity might be a critieat  gych a result, but it is absent from the work of Conigitcal.
cludedvolume. This concept, however, cannot be reduced t\nother unsatisfactory aspect is that the extension of this
some underlying lattice structure. Instead, it requires considyork to various percolation systems has to be done by anal-
ering the continuum as fundamental rather than a large scalsgy and reasonable assumption. While this is not a serious
approximation. problem, one would like to see a more formal basis for such
Fruitful as the excluded volume concept was, it nevertheuses. The second main problem is that the theory of Coniglio
less had clear limitations, since the critical excluded volumeet al. does not say anything about the order parameter, the
is not in fact a truly universal quantity. The shape of objectspercolation probability. This problem is related to the first
in the system clearly influenced the critical point — i.e., thebecause perturbative expansions are limited to the region of
critical densityp. at which an infinite cluster first appears — densities below the critical point, while the order parameter
in a complicated way. is nontrivial only at densities above this point. Furthermore,
In 1977, Haan and Zwanziff] managed to push to its the percolation probability is not obtainable from the pair
limits the analogy between continuum and lattice percola€onnectedness, and therefore requires a different approach.
tion. Relying heavily on graph theory, they managed to ex- Such limitations also prevent one from approaching some
pand the mean cluster si&in powers of the density. From fundamental questions. First among these, probably, is re-
this, they obtained values for the critical density which werelated to the continuum percolation universality class. Com-
in good guantitative agreement with the results of simulaputer simulations suggest that continuum percolation belongs
tions. However, this line of developments was reaching itdo the universality class of lattice percolation. One would
limits as it became clear that continuum percolation could bdike to understand this from the theoretical point of view, as
a complex interplay involving not only the shape of objectswell as to assess whether this is true for all possible interac-
— which determined the binding criterion —- but also pos-tions and binding criteria. Computer simulations are inad-
sible interactions between these objeff$. This element equate to address this problem, since they are greatly com-
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plicated by the presence of interactions. Furthermore, A ) U(Fi T if Ni=\;
obtaining critical exponents from a simulation is a notori-  V(r; ,\;;rj ,A)=V(i,j)= o _

ously delicate procedure, and one cannot claim yet that the W(ri,ry) if Ni#FAj,
universality class of continuum percolation is known with (2.1)
certainty.

. . . whereU andW are arbitrary functions.
The present series of papers is meant to be the basis for a ) - .
The spins may also couple to an external fie{d) which

more comprehensive theory of continuum percolation, whic ; X . .
b y P nds to align them in some given state. If we arbitrarily

is based on an extension of the classic mapping between t ; : . S e
: : . . enote this state as 1, then the interaction Hamiltonian is
Potts model and lattice percolation which was invented by

Kasteleyn and Fortuifil3]. The present extension includes N

an off-lattice version of the Potts model which | have called Hi=— >, ¢(\)h(r}) (2.2
the Potts fluid. The-state Potts fluid is introduced in Sec. Il. =1

| show then that, as in the lattice case, all statistical averag

in the percolation model may be expressed as averages in the

Potts fluid. In Sec. I, this mapping is applied to the Potts s—1 if aA=1
magnetization and susceptibility. The lint->1 of these Py(N)= 1 i N
guantities yields the percolation probabiliB(p) and the '
mean cluster siz&, respectively. Section IV is concerned rqr congiseness, two spins in the same state will be said to

with the Potts correlation functions. The pair connectednesgg parallel to each othetthough the state need not actually

is shpwn to b_e directly related to the Potts pair-correlatiorborrespond to any spatial directiongwo spins in different
function. Section V sums up the results. states will be called nonparallel.

As in all classical systemEl4], the dependence on the
momenta can be factored out so that all statistical averages
Il. GENERAL FORMALISM depend on the configuration integral

2.3

By “continuum percolation” | always mean a system of 1
particles interacting through a pair _potent'wqﬂ _,r]—) and Z= Wz del...dFNex;{—ﬁz V(i)
obeying classical statistical mechanics. In addition to their A} 1=
interaction, the particles possess another property, the “con- N
nectivity,” determined by a probability functiom(r;,r;) +B>, h(i)g(\),
which is the probability that two particles locatedratand =t
Fj are bound, or connected, to _each otherclésteris a . where the Surnz{)\ \ is over all Spin Conﬁgura’[ions, and
group of such* cgnnected particles. Let us also def'n%=1/kT is the invgrse temperature as usual.
q(ri,rj)=21-p(r;,ry) as the complementary function. Now, any continuum percolation model defined by
Note that we do not assume any “locking” mechanism: (i j) andp(i,j) can be mapped onto an appropriate Potts

bound particles do not remain glued together thereafter. Infyid model with a pair-spin interaction defined by
deed, the system does not evolve with time at all. The point

(2.9

of view adopted here is that of equilibrium statistical me- U(i,j)=wv(,j),
chanics, where all properties are derived from an ensemble
of “snapshot” configurations. As a result, the properties of exd — BW(i,j)1=q(i,j)exd — Bv(i,j)]. (2.5

connectivity and interaction are arranged hierarchically. The
interaction alone determines the configuration of the parThis mapping relates statistical averages of the Potts fluid to
ticles, which in turn helps determine the connectivity, but thestatistical averages of the percolation model. The most fun-
connectivity does not in its turn influence the configuration.damental relation is obtained for the Potts fluid configuration
Often, as in systems of permeable objei@§ p(r; ';j) integral Eq.(2.4). However, because the following derivation
takes only two values, 0 or 1, but no such restrictions ar&an be a little confusing, let us anticipate the final result. The
assumed here. Thus the connectivity state need not H@Mal mapping Eq(2.5 induces a geometrical mapping
uniquely determined by the geometrical configuration of theP&tween spin configurations and connectivity states. To ev-
particles. Only its probability distribution is fully determined €y particle in the percolation system we assign a spin in
: > > such a way that if two objects belong to the same cluster in
through the functiorp(r; ;). the percolation model, they are assigned the same (§pin
The formalism presented here is an extension of th P , (hey g Pl

Kasteleyn-Fortuin mapping between lattice percolation anghelr spins are parallgin the corresponding Poits fluid spin

: . , configuration. However, the actual value of this common
the Potts moddl13]. For the continuum case | will define an spin is selected at random. Therefore the mapping from the
extension of the Potts model, hereafter calledRiogs fluid b i Pping

The s-state Pots fluid is a system bF “spins” {7\i}iN:1 percolation model to the Potts fluid is one to many. Any

; . X . L fonnectivity state corresponds to several spin configurations,
each having possible states, and obeying classical statistica), pich differ from one another by the actual value of the spin

mechanics. Each spin has a positigrin the continuum and  assigned in common to all the particles in a given cluster.
the spins interact with each other through a spin-dependeBecause of the one to many character of this mapping, the

pair potentiaIV(ﬂ Y ;FJ- ,\;), such that status of two parallel spins differs radically from the status of
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two nonparallel spins. If two spins are nonparallel, theyst ~ where Z; ;) (1,2 means a summation over all pairg,j(
belong to different clusters in the percolation picture. How-except the pair (1,2). In the second term on the left-hand side
ever, if two spins are paralleho conclusiormay be drawn of Eq. (2.7), we can now rewrite

as to their connectivity state. They might be parallel because

they belong to the same cluster. But they might also belong .

to different clusters and have been assigned the same spin y2 F{ B(i ')2:(1 2 V(i 1)}

chance. Since the common spin of every particle in a clustei;xlﬂzl ! '

is assigned randomly, it is quite probable that two unrelate

clusters end up with the same spin. This difference makes

“disconnectedness” a more basic property than connected- = 2 exr{ -B 2 V(i,j)}

ness, in the sense that given a spin configuration, one can {r (D=2

never deduce with certainty that two particles belong to the

same cluster in the corresponding percolation model. How- - 2 ;{ B E V(i, j)} (2.8
ever, one may be able to deduce that two partidesnot (thxz} (.)=(12

belong to the same cluster.

Let us now see how this geometrical mapping arises nat
rally out of the formal mapping Ed2.5). For simplicity, let
us assume temporarily that the external field vanishes, i.e.;

Yihere the sunky, . is now performed over all spin configu-
rations without constraints. Equati@®.7) now becomes

h(r)=0. Introduce the notation
Q=[e P12 —eM12] 3 F{—B 2, vm)}
1 - I - M (i) =(12
Z:mf drl.--drNQ(rl, ...,I’N), [}\1:)\2)
- R . - +e AW(12 - V(@i,j)|- 2.9
Q(rl,...,rN)={2} exp[—ﬁZ V(). (2.9 © {xzm} exﬁ{ Bu,nzu,z) ( J)} 29
m i>]

The mapping Eq(2.5) then implies that

In the expression foQ(1, ... N), let us separate all pos-
sible configurations\,, into those wherex;=\,, and the
rest Q=p(1,2e 12 3 r{—B_E vm}
m ] (i,)=(1,2)
A=A\
Q-e V12 3 exr{—ﬁ > vmn} n
[ Am J (iL)H=(1,2 —Be(L2 .
A=A +q(12e 12X exg g > V(i)
i (i,)=(1,2)
Te M2 D exp-p 2 V(i) (2.19
m } (i) = (12

M7FA2 where we used the fact tha(1,2)=1—q(1,2). Repeating

(2.7 this procedure for the pair (1,3), we obtain

+p(1,2)q(1,3 e Alv(12 (3]

Q=p(1,2p(1,3e AlrA2+v@3] exr{—ﬂ > V(i)
A } (i,j))—(1,2—-(1,3

{x1=>\2=>\3
X X exp[—ﬁ > V(i,j) [+q(1,2p(1,9e A2 to@3l > exr{—ﬂ > V(i)
Am (1,))—(1,2—(1,3 Am (i,j))—(1,2—(1,3
kkf}\zJ A=\3
+q(1,2q(1,3 e Alv2Tv3]1 Y exp[—ﬁ > von} (2.19)
mt (i,j)—(1,2

One sees therefore how the geometric mapping comes about. Every sum is performed over a subset of spin configurations
determined by a set afonstraintsof the formA;=X\,, ... . All constraints are equalities between spin pairs. There are no
constraints forcing two spins to be nonparallel. Every constigiat\j also brings forth a factqo(i, ), the probability for the
pair to be bound. Since a bound pair belongs by definition to the same cluster, we see the beginning of the geometrical
mapping in which spins in a single cluster have parallel spins. To see the full mapping, we need to repeat the procedure
outlined in Eqgs.(2.7—(2.11) for all pairs of spins. Let us consider one of the sums into which the fun€idmas been
decomposed a step before, and consider a pain). Two possibilities arise.

(1) Previous constraints already determine that=\, (for example, there could be sonkefor which \,=\, and
An=A\y). Then, necessarilyy(m,n)=U(m,n)=v(m,n). Hence
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> exp[—ﬁ V(i,j) [=e Armm exp[—/a > vm}
A l (i,j)—--- [ }‘"_‘ i ()=
previous

m
previous
constraint

constraint

=p(m,n)e Amn > exp[—ﬂ > V<i,j>}
] (i,j)=---—=(m,n)

)‘m
{ prev.

constr,

+q(mnje Amn 3 ] exr{ B, = vmﬂ,

)‘m
{ prev.
constr
(2.12
|
where we useg(m,n) +q(m,n)=1. When all pairs have been covered, the set of constraints of
(2) Previous constraints do not determine thgt=X\, . a particular sum specifies exactly which particles belong to
Then the situation is as it was for the pair (1,2), and the sumvhich clusters in the original percolation model configura-
will split in the following way: tion. Since the expression f@ contains sums over all pos-

sible constraints, it can be rewritten as a sum over all pos-
sible clusterings of the original percolation configuration.

}\E exr{—ﬁ(ij)va(i,j)} Thus let us define
|C0|'r]nStrJ Y
— p(m,n)e—Be(mm P(conn)= q p(i.j) q q(m,n)
bc?t_md un!?qun
pal_rs pairs
X > exp{—,@__ > V(i,j)} (i) (m,n)
Rm:}\l (.= —(mn)
o xex;n[—ﬂz v(i,n} (2.14
i>]

+q(m,n)e” A imn

Then we can write as
X > exp[—ﬁ V@i, j)|. (2.13
Omeo- .} (i,j)=--=(mn)
From the point of view of the geometrical mapping, cébe Q= E _ E P(conn), (2.15
means tham and n already belong to the same cluster by [ j}j"n‘r’,%sc‘i‘i'\?i'q Am coneisten
virtue of some other particles which link thefperhaps in- states conntetitivity
state

directly). Hence it does not matter whether they are also
directly bound to each othda case which contributes the
factor p(m,n)] or not[a case which contributes the factor where the sum over all spins is consistent with the connec-
g(m,n)]. As a result, both contributions appear without thetivity state in the sense of the geometrical mapping, i.e., that
addition of any constraint. In cag2), on the other hand, the all particles within a single cluster must be assigned the same
appearance of the fact@(m,n) also requires a constraint spin(note, however, that not all particles in a cluster need be
which now implies thatm and n are bound and therefore directly bound to each othgr

belong to the same cluster. The factfim,n) requires no From the probabilistic interpretation of the functions
such constraint, since, if the particles belong to differentp(i,j), q(i,j) and of the usual canonical Gibbs distribution,
clusters, their spin attribution is random. we now see that up to a normalization, E2.14) means that

[probability density of finding a configuration; , . . . ry)
P(conn)o such that all pairgi,j) are bound and all paifgn,n) (2.19

are unboungl
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Returning now to Eq(2.4), and restoring the external field 1
h(F), we finally find (G(I\g; ... ;N,)\N)>S:—N!ZJ di- - -dN
1 . .
Z= —f di---dN > P(conn) X{;} G(LAs; - N
N! conn. m
{ statels
N Xexr{—BE V(i)
x > exp[ﬂz hryg(\) | (217 =)
{\mcl} =1 N
Here the symboE, . means a sum over all spin configu- +/3i21 h(w(\)|. (222
rations consistent with the clustering, i.e., with the connec-
tivity state in the sense of the geometrical mapping. Equation(2.15 now implies that, in general, for any quantity
This expression has the form of an average over all perg(1,; ...:N,\,) defined in the Potts fluid system, we
colation configuration(up to nonimportant normalization pgye
factors. It is the fundamental relation between statistical av-
erages calculated in the percolation model and quantities calG(1\; ... ;N,\y))s
culated in the corresponding Potts fluid. As we shall below,
this allows us to obtain percolation-related quantities by cal-  _ G(1A: N ) elBERD )] 29
culating properties of the Potts fluid defined in E8.5). {EC.} (LA1i - NAw) - @223

However, since there is no equivalent in the percolation P

model to the fielch, we need to set this field to zero. In this This fundamental relation allows us to translate every quan-
case, Eq(2.17 becomes tity in the Potts fluid into some quantity defined in the con-
tinuum percolation model.
We now turn to using Eq2.20 to show that the average

Z di- - - dN E P(conn)sNe,  (2.18 magnetization in the Potts fluid is directly related to the order

N! | ciates parameter of the percolation model, the percolation probabil-
ity.
whereN; is the total number of clusters in the relevant con- v
neCtiVity state. The termNC is then the number of pOSSible IIl. POTTS MAGNETIZATION AND PERCOLATION
assignments of spins to thele clusters in accordance with PROBABILITY
the geometrical mapping.
Finally we shall have to get rid of the free parametefs The magnetization of the Potts fluid is defined as in the

in the usual Kasteleyn-Fortuin mappiftg3], the interesting usual Potts model by
case is the limis— 1. The resulting expression

M 1 alnZ 3.1
1 ~ BN(s—1) ¢h @
4 E—f di- - -dN P( conn 21
PN [c%r;n; ( ) 219 whereh is the now constant external field. From E¢&.20
state and(2.23, we have
is just the normalization factor required for averages per- 1 N
formed within the percolation model. Hence
M N

N
z:zp< > exp[BiEl h(r)$(\)

{Nmicl}

. (220 1 N
>p _<N(S—1){)\§ [Z lﬁ()\i)

) -

(F(1,... N))pzif di- - -dN In order to calculate this expression, we need to charac-
N!Z, terize more formally the sum over all spin states. In a given
connectivity state, let us denote by(1<r=<N) the number
X > P(conn)F(1,...N), (2.21)  of clusters containing exactly particles(possibly N,=0).
( gg}g; Also, because of their particular role, let us denote separately
the number of spanning clusters bl (as we takeN— o,
whereF is some quantity defined in the percolation model. Ny is either O or 1. Any connectivity state thus corresponds
Similarly, we need averages performed in the Potts fluidfo a set of numbersN;,N,, ... ,Ny,Ng) (other connectivity
which will be denoted by);. Given a quantityG defined in  states may also correspond to the samg Bet a given spin
the Potts fluid, we have configuration consistent with this clustering, let us denote by

where the symbo{), means a canonical average performed N
in the percolation model, i.e., Xex;{
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k, the number ofr clusters which have been assigned the

s N,
spin 1 (, will represent the spanning clusters assigned the H 2 ( )(s N kI(e'ﬁhs)kl}( N)
spin 1. Every spin configuration generates therefore a set - -
(k1,Ks, ... kn,Ks). Then the total number of spin configu- N—s
rations consistent with the given clustering is — _NJT [e#hs+(s— 1) (3.9
Nl S k k I=1
N S
S H A ] R o s
X (s—1)Nka L (s—1)Nsks 3 (& [k &
(7Y sy 49 113 k| |s— DN e S s
The factor 6— 1) ¥ is the number of possible spin assign- =1 (k= ! -1

ments to the ll, —Kk;) r clusters which have a spin different
from 1.

Consider now the expressi(ﬁ’.}'\‘zlw()\i). From the defi-

Ne N,
(ll\(l||) (S_l)N|—k|(el,8hS)k|]

i=1 k=0
nition of (\), Eq. (2.3), everyj cluster with a spin 1 con- I#]
tributes a termj(s—1) to this expression. Every cluster N; k. _
with a spin different from 1 contributel{ — 1) to it. There- X k; NJ_ (s—1)Ni~ki(elAhs)ki
fore, for a given spin configuration, kj=0 |

N

N
_Z (s— 1){21k + Nk

giBhs Ng
= iNj Sars e
2, SiNygams =L

N X [eBhs+ (s—1)]N. (3.9
| 2 J(Nj=kj)+ng(Ne—ko)
=1 Combining these two equations, we finally obtain
Ng
. N N N
:SLZ,I jkj| =N, (3.9 { D } {exp{ﬂhil BN 21 lﬂ()\i)] :e—Bthl_[ [e!Bhs
Nyl i= i= =1

whereng is the number of spins in the spanning cludise

ticipate the thermodynamic limit and that th S elfhe
anticipate the thermodynamic limit and assume that the span- n 1IN — N+ N: 31
ning cluster, if it exists, is unigueand Where we have used (s=1)] [ 2 SINy elfhs4(s—1) (310
the |dent|ty2 ,1Jk N. The notation>: 71jk is shorthand \
for nek +2, 1lk Recalling thatN=X = ,jN; and rearranging terms, we have
We now have that that
1 N N 1 N N
— e h N N —_— expg Bh N N
N(S_lmgd}{ XP[B 2, )| 2, o .)] N(s—l){éc.}{ p[ﬁ 2, v |2, Ul .>]
Ng N k 1 Ng
—g BN M (s— 1)Ni—ki(glBhs)ki — T a-BhN 1Bhs, (e 111N
.Hl[klzo(l\l. (s= 1)) e N retere (s
Ns s 'Bhs 1
NS = NN « e = NS
Wher_el'II:l—lel ><(case_| NS)_. _ N [1+(s—1)e SN
It is easy to provde.g., by inductiohthe two identities T ih
N; N. . .
k|) B s jN~ 1—e jphs
S_l N, k| e|ﬂhS k|: e|ﬂh$+ S_l N|’ _]
kIE:O N, | (57 DN I=[efNo (5= 1)] X2 N Tr e (3.1
(3.6
Hence
> K N')(s—1>N'—k'<e'B“S>k' Ny
k=0 | :<H [1+(S_ 1)e—sﬁ|h]N|
elBhst (s—1)1M =1
L (=1 N,e'ns, (3.7

[Bhs _ Ng
er™+(s—-1 N
( ) XZ JNJ

Therefore, =1

1 eJ.BhS
Tr(s—pe P - 312
p
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To obtain a quantity directly related to the percolationTaking now the limit h—0, and using again that

model, we need to take the limst— 1, which yields N=EJN=51JN,- , gives
M >N 2N
N N f =1 J
13 18 x=—=ﬁllm<N—.> : (3.19
Y el N N -jph dh o) 2SN
M(S—>1) <NJZ:LJN] Njgle >p N J=lJ J p
N For densitiedower than the critical density, there is no span-
=l—<%i jN,—eiﬁh> . (3.13 ning cluster(in the thermodynamic limjt so that
i=1
F’ =N,
Finally, we need to take the thermodynamic limit and set the X=p1im SN N, | TP (p<pc), (3.20
external field to 0. As always, we must be careful in the order N\ =j=aIlNj [

of these limits[15]. A broken symmetry state will only be
obtained if the field remains finite whild—-cc. In the limit
N—oo, the spanning cluster behaves differently from the fi-
nite clusters. Equatiof8.13 can be rewritten as

whereS is the average mean cluster size, by definifibé].
Therefore, we can calculate the percolation probability by

calculating instead the magnetization of a corresponding

Potts fluid, and the average mean cluster size by calculating

the Potts susceptibility.

N

1 ) ngN
M=1- N< > iNje iAn4 %‘eﬁ“”s> . (3.14 IV. CORRELATION FUNCTIONS
=1
P The Potts magnetization and susceptibility are directly re-
In the limit N—, the factors exp¢jAh) remain finite, but lated to then-density functions of the Potts fluid, which are

exp(-Ahn)—0 because the spanning cluster then become@efined in analogy to the-density functions of a classical
infinite. It is this property which distinguishes it from all liquid [14] as
finite clusters. Hence

P TTI0 VH 210 W HN S W

N
1 .
M=1- lim <—E ije‘JBh> . (3.15
A p . S (TR
Z(N_n)l n+1 N
Finally, we can seh=0. At this stage, the limits commute

A N
and we obtain xexr{ _'ng V(i ,j)—ﬁzl h(hy(\)|. (4]
] 1 ) ] N—ng The normalization is chosen so that
M=1- lim —2 iNj ) =1—lim
N—o Nj=l p N— oo N p
|
> di---dnp™W=sNM— . (4.2
= lim <n_s> . (3.16 (ST (N—=n)!
Nooo | N
P The n-density functions can also be expressed as canonical
This is exactly the probability that a particle picked at ran-2Verages,
dom belongs to the infinite cluster, which is by definition the
percolation probabilityP(p). Therefore, R N L
PV e)={ 2 ar=x)0, o) | 4.3
S

lim lim limM=P(p), (3.17
h—0 N—w s—1

=1 1

#i s

N
and the percolation order parameter is directly calculablep'?(X, a3y, %)= > 8(ri—x) 5(Fj_§)5xi,05)\j )
from the Potts magnetization.

We can calculate the Potts susceptibility most easily from

Eq. (3.15, before we set the field to (t is easy to see that ] (4.4
the derivatived/dgh commutes with all the operations per- and so on. Now, we can rewrite
formed up to that point Thus

p(N)=(s=1)6\ 1= 2, O\ - 4.9

N
F Y R
X:E:gnm<ﬁj2112|\ue mh> . (319
p

AEL

N— o

Using the identityfdié(ﬂ—i)=l, we now have
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N N oo where, again, the sum over and y runs over thes spin
2 (N ) ={(s— 1)2 dxs(r;—Xx) O\ 1 states. Hence, by a derivation similar to the one used for Eq.
=1 s =1 s (4.6), we have

1#]

N
—<i21 dxa(ri—x) 2 5”‘“>s <2 70N >

=f dx (s—1)pD(x,0=1) =<§ Ey tﬂ(a)tﬂ(y);j
_;1 pD(x,0)|. 4.6 xfdid;?a(Fi—i)a(Fj—Q)aM,aaxj,7>S

Since the fieldh preserves the symmetry between all the :f dxdy]
spinsh # 1, p(x,0) must be the same for at# 1. Hence

> Ey w(aww)d”(i,a;yiy)} (4.13

1 . . . Therefore
M=< Z w<x>> == f dxpM(x,1)— pP(x,a)]
N(s—1)i= N B ..
4.7 X= mf dxdy

where o denotes somearbitrary) spin value other than 1.

; ; w<a>w<wp<2><i,a;§,y>}

From the normalization, Eq4.2), it is now obvious that + ﬁj dx>, #A(@)pP(X,a). (4.14
f diP(l)(i, 1)=ny, Let us now relate this expression to the percolation pic-
ture, i.e., to the limits—1, when y— 8BS for densities
wheren, is the number of spins in state 1, and p<pc. For this range of densities, the symmetry of the sys-
tem is completely unbroken and')(x, a) is independent of
e T a. From the normalization Ed4.2), it follows that
dxp'(X,@)=n,
_ o dxp(x 1 dx>, pY(x,a)=N. (4.19
wheren is the number of spins in any staie* 1. Xp' U (x,a)= 2 | dXx < P (X,@)=N. (4.
(4.9
2 —(o_ 2 _ _ 2
Hence Now 2 ¢ (a)=(s—1)°+(s—1)(—1)4, so that
1 2
M = N(nl_n) (4.9 |Im:LS 12 (a)= (4.16

is just the excess density of spins in the state 1 over thand, therefore,
density of spins in any other state.

From Eq.(3.2), and the definitiony=dM/dh, the suscep- B - 2 )2
tbility is NG—D) ) X2 A@pP(xa)=p. (41D

B Hence, whers— 1,
x—< Nis— 1) w(x>¢(x>> +<N(S 1)2 ¢(x)>

X 1 -
(4.10 5 S=1tlim g _1)f dxdy| 2 X (@) ()
s—1 @ Y
Repeating the steps leading to E4.6), we have
< 2 > 5 PP (X,ary, 7). (4.18
dx
N(s—1)i= v (5—1)f 2 ¥ () Let us now recalculate this quantity by using the general
R connection between averages in the Potts fluid and in the
X pV(x,0), (4.1)  percolation model, Eq2.23. In particular,we have
where the sum over runs over all thes possible spin states. B
On the other hand, m;] P(Ni) P(Nj)
S
NDW(N) = Sy aOr. 4 B
iE;ﬁj 'ﬂ( |)¢( ]) % Zy lﬂ(@*ﬁ()’)% N, }\j,y :N(S_l)E < E (//()\)(//()\ )> , (419
(4.12 i#] {)\m C| p
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-dN 2 P(conn)

where we have already set=0, which is allowed, since, in B J
di. -
s—1)N! [ conn;
state:

the rangep<p., the symmetry is unbroken anyway. Let us Z N(s— 1)NI
now calculate the average on the right-hand side separate]%/’

when\; and)\; belong to the same cluster and when they do
not. To this end, define a functidi(i,j) as

X 2 PO BODQ)
{Nm:cl}
1 if i,j belong to the same cluster B

0 otherwise. T NIZN

(4.20

Q(i,j)=[ J'dlmdN[Z P(conn)sNe~1

conn
state

X(s—1+1)Qf(i,j)
Then, from Eq.(2.21),

:§<SNCQ()\| ,)\J)>p (423)

< > w<m>w<x,->>
{Am-cl} b The second sum on the right-hand side of &g21) contrib-
utes only ifA; and\; belong to different clusters. The cluster
containing \; contributes a factorq—1) if A;=1, and a
& factor (— 1) in all the other §— 1) cases. The same holds for
[ statei the cluster containing; . TheN.—2 remaining clusters con-

tribute each a factos. Hence

1
:N!pr di---dN >, P(conn)

1
X{AEd} YODPON)Q(L)) + 5 | dL---dN
" P o2y PPN QD))

" %; Ploonm) 2. , #0111 =N 2(s- 1)+ (5= 1) (~ DI 1- 0. j)]
(4.21) =0. (4.29

The first sum contributes only ik; and \; belong to the We can now substitute Eq8t.23 and(4.24 into Eq.(4.10,
same cluster, while the second contributes only if they bethen again take the limg— 1. Repeating the steps leading to
long to separate clusters. Because of the geometrical mafd- (4-18, we end up this time with

ping, #(\;)=¥(\;) in the first sum. Also, in the sum over

{\m:cl}, every cluster other than the one containingand X _ i - - N U

\; contributes a factas, the number of possible spin assign- ,3_>S_ 1+5 ] dxdy gfl QL) éri=x)8(rj=y) ) .
ments. The cluster containing and\;, on the other hand, P
contributes a factorg—1)? if \;=\;=1 and (~1)? for the (4.29

(s—1) other possible choices far;=\;. Therefore, We define now the function

1
. ) i i)=caeNc—1 _1)2 _ T _),_))E _ _ < Qi,j) s »i_-»)g _>‘__,)>
{EC,} YY) [) =s" (s 1)+ (s— 1) glxy="= ;J (i) (ri=x)a(r;—y p

(4.26

to be thepair-connectednesfsmction[p()Z) is the density at

whereN; is the total number of cluster in the configuration. position x]. From the definition of2(i,j), the meaning of
Hence g'is

X(=1?1Q0,j), (422

(probability of finding two particles in regiord;;( and
p(x)p(y)gT(x,y)dxdy=dy around the positions andy , such (4.27
that they both belong to the same cluster)
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which shows the pair-connectedness to be a generalization

the corresponding function in lattice percolatid6]. Hence

1 Cs . -
S=1+ Nj dxdyp(x)p(y)g'(x,y). (4.28

THEORY OF CONTINUUM PERCOLATION. I. ...

Usually, the system is translationally invariant, so that

g'(x,y)=g'(x—y) andp(x)=p(y)=p. Then

Sl+

Jdrg*(r 1+pj drg’(r). (4.29

Comparing Eq(4.28 with Eq. (4.18, we finally obtain the
important relationship

> 2 P(a) ()

t =i
el P pETT

X pP(X,a;y,7). (4.30

6001
(ﬁ () ()92 (X, a3y, 7)
=(s— 1)2 W(y)92 (X1, y)+(s—1)
X 2 Wa)gP(x,a;y,1)
a#l
—E 2 W) P(y)gP (X, @}y, 7)
'y#l
=(s—1)gP(x,1}y,0)
+g(x,a7y,1) ]+ (s— 1)(s—2)g®(x,a;y,7)
(4.36

whereo # 5 are any values of the spin which are both dif-
ferent from 1. As a result,

Let us now introduce the spin pair-correlation function, de-

fined as

1
—p2(x,a;y,7),

ay,y)=——————
pM(x)pP(y)

9 (X,
(4.3)
which tends to 1 whefx—y|—%. We can now rewrite Eq.
(4.30 as
g'(x.y)=lim —Z 2 W@ Y9G (Xary.y)
S—»l
(4.32
or

g'(x.y)=lim S—Z P9 (X, ay,a)

s—1

+1lim S—E @) P9I (X, @y, ).

s—1
(4.33

We now have
E P )9 (X, a;y,a)=(s—1)29Z(x,1;y,1) +(s— 1)

X (—1)%9P(x,0:y,0), (4.34

where ¢ is any value of the spin different from 1. As a
result,
im S ()9 (K, asy,@)= i,y 0 (%,035,0)
15— 1%
(4.35

whereo#1.
Similarly,

lim HE (@) (192 (X, @}y, 7)

s—1

>

- IimS—>lg§52)(>_()! O';y, 7])

(4.39

Substituting Eqs(4.35 and(4.37) into Eq. (4.33, we have,
finally, that

g'(x,y) =lim[gP(X,07y,0) — 9P (X, 01y, M) 1(p<pc),
s—1
(4.38

whereo,n#1 ando# 7.
This last equation is easily understood in terms of the

geometrical mapping. If two particle%and)7 belong to the
same cluster, they must have the same spin, say adspin

Henceg'(x,y) must be contained ig{®(x,o;y,o). How-

ever, g?(x,o;y,0) also includes the case where the two
particles have the same spin but belong to different clusters.
This happens if the two clusters have been assigned, by
chance, the same overall spin. However, since such a spin
assignment is random, the probability of the two particles
having the spingr and o (identica) is exactly the same as
their having spingr and », where nowo # 7 (note that such
an assignment automatically necessitates that the particles
belong to different cluste)sHenceg(z)(x,a;ﬁ,(r) exceeds
a'(x,y) by preciselyg®(x,0;y, 7). This is the meaning of
Eq.(4.38. This allows us to calculate the pair connectedness
by working out the spin pair correlations and then taking the
limit s— 1. This completes the relation between the percola-
tive quantities and those of the Potts fluid.

V. CONCLUSION

This paper focused on the formal basis of continuum per-
colation theory. It provided a nonperturbative definition of
the fundamental quantities of the theory as well as showing

formally how the binding criteriomp(r) and the interaction
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v(r) enter them. We saw that the quantities of interest infine of attack is always to perform all calculations or theo-
continuum percolation can be obtained from the 1 limit retical derivations within the Potts fluid model, then to take
of the Potts fluid. Specifically, the magnetization and thethe limit s—1 and thus obtain the corresponding values or
susceptibility become, in this limit, the percolation probabil- expressions in the percolation system.
ity and the mean cluster size, respectively, while the pair The first such technique that one would think to apply to
connectedness is, in this limit, the difference between twany problem of phase transition is the mean field theory. The
Potts pair-correlation functions. Hamiltonian formulation of the Potts fluid allows a mean
The advantage of this mapping is that the Potts fluid has field approximation to be defined, while it would be far from
Hamiltonian formulation. This is the key to applying the obvious how to do this directly for the continuum percolation
technigues of equilibrium statistical mechanics and phaseystem. The mean field theory turns out to be nontrivial to
transitions to the problem of continuum percolation, a taskderive because of the continuum nature of the system and the
which will be undertaken in future papers in this series. Thepresence of interactions. It is the subject of the next paper.
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